首页> 外文OA文献 >Efficient deconvolution methods for astronomical imaging: algorithms and IDL-GPU codes
【2h】

Efficient deconvolution methods for astronomical imaging: algorithms and IDL-GPU codes

机译:用于天文成像的高效反卷积方法:算法和算法   IDL-GpU代码

摘要

The Richardson-Lucy method is the most popular deconvolution method inastronomy because it preserves the number of counts and the non-negativity ofthe original object. Regularization is, in general, obtained by an earlystopping of Richardson-Lucy iterations. In the case of point-wise objects suchas binaries or open star clusters, iterations can be pushed to convergence.However, it is well-known that Richardson-Lucy is an inefficient method. Inmost cases, acceptable solutions are obtained at the cost of hundreds orthousands of iterations. A general optimization method, referred to as thescaled gradient projection method, has been proposed for the constrainedminimization of continuously differentiable convex functions. It is applicableto the non-negative minimization of the Kullback-Leibler divergence. If thescaling suggested by Richardson-Lucy is used in this method, then it provides aconsiderable increase in the efficiency of Richardson-Lucy. Therefore the aimof this paper is to apply the scaled gradient projection method to a number ofimaging problems in astronomy such as single image deconvolution, multipleimage deconvolution, and boundary effect correction. The correspondingalgorithms are derived and implemented in interactive data language. To attemptto achieve a further increase in efficiency, we also consider an implementationon graphic processing units. The proposed algorithms are tested on simulatedimages. The acceleration of scaled gradient projection methods achieved withrespect to the corresponding Richardson-Lucy methods strongly depends on boththe problem and the specific object to be reconstructed, and in our simulationsthe improvement achieved ranges from about a factor of 4 to more than 30.Moreover, significant accelerations of up to two orders of magnitude have beenobserved between the serial and parallel implementations of the algorithms.
机译:理查森-露西方法是最流行的反卷积方法天文学,因为它保留了原始对象的计数数量和非负性。通常,通过早期停止Richardson-Lucy迭代获得正则化。对于诸如二进制或开放星团之类的点状对象,可以将迭代推到收敛。但是,众所周知,理查森-露西是一种低效的方法。在大多数情况下,以数百次迭代的代价获得了可接受的解决方案。对于连续可微凸函数的约束最小化,提出了一种通用的优化方法,称为缩放梯度投影法。它适用于Kullback-Leibler散度的非负最小化。如果在此方法中使用Richardson-Lucy建议的缩放比例,则可以大大提高Richardson-Lucy的效率。因此,本文的目的是将比例梯度投影方法应用于天文学中的许多成像问题,例如单图像反卷积,多图像反卷积和边界效应校正。相应的算法以交互数据语言导出并实现。为了尝试进一步提高效率,我们还考虑在图形处理单元上实施。在模拟图像上测试了所提出的算法。相对于相应的Richardson-Lucy方法而言,实现缩放梯度投影方法的加速很大程度上取决于问题和待重建的特定对象,并且在我们的模拟中,所实现的改进范围约为4到30倍以上。在算法的串行和并行实现之间已经观察到高达两个数量级的加速。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号